算数を究める

算数の基礎と雑学をわかりやすく解説します。よりよい算数授業と算数好き児童を増やすサイト

5年生の算数

四角形の内角の和 授業のポイント

投稿日:2020年3月18日 更新日:

四角形の内角の和の学習は、研究授業でも扱われることの多い授業です。しかし、教科書通りのやり方には大きな落とし穴があります。詳しくは下のページを参考にしてください。

このページでは、四角形の内角の和の授業を行う際のポイントについて紹介します。

導入

前時で、三角形の内角の和について学んでいるので、その授業末に、児童から「次は、四角形の4つの角の大きさの和を求めたい。」という声があがっているとスムーズですね。

問題

導入からの流れで、

「四角形の4つの角の大きさ(内角)の和はいくつになるでしょう」

でいいです。

見通し

三角形の内角の和が180度であったことを確認するだけでなく、三角形について、演繹的に考えたことを抑える必要があります。

四角形についても、帰納的でなく、演繹的に考えることを確認しましょう。(帰納的・演繹的という言葉は使いません)

さらに、既習の四角形である長方形と正方形について、内角の和が360度であることを確認し、他の四角形も360度になるのかを考えることを抑えましょう。

めあて

今回の授業では、四角形の内角の和を演繹的に考えることがキモとなります。

そのため、「どんな四角形でも、4つの角の大きさ(内角)の和が360度になるのでしょうか。」や

「どんな四角形でも、4つの角の大きさ(内角)の和が360度になるのか調べよう。」

というめあてになります。

自力解決&練り上げ

児童から出されるであろう解法について紹介します。

①対角線を1本引いて、三角形2つ分だと考えるやり方

180度×2=360度 になります。一番シンプルなやり方です。

②対角線を2本引いて、三角形4つ分を考え、中央の余計な角度(360度)をとるやり方

180度×4-360度=360度 になります。

③四角形の中にある点から頂点へ引いた直線で、三角形4つ分を考え、中央の余計な角度をとるやり方

②のやり方と似ていますが、直線の引き方が異なります。詳しくは下で説明します。

④四角形の辺上にある点から頂点へ引いた直線で、三角形3つ分を考え、中央の余計な角度をとるやり方

180度×3-180度=360度 になります。

このとき引く180度は、直線の180度です。

⑤四角形の外にある点から頂点へ引いた直線で、三角形3つ分を考え、中央の余計な角度をとるやり方

180度×3-180度=360度

このとき引く180度は、三角形の内角の和の180度です。

共通点

上で紹介したやり方は、すべて

「ある点から頂点へ直線を引いて三角形に分けている」

という共通点があります。やり方の似ている②と③をみると、

もととなる点が異なることがわかりますね。

まとめ

以上の展開を踏まえて、

「すべての四角形は、2つの三角形に分けることができる」ことを確認し、

「四角形の内角の和は、三角形の内角の和2つ分と考えて、360度です。」

というまとめになります。

発展(一般化)

適用問題を解いても構いませんが、一般化について考えることができます。

⑤のやり方は、そのまま五角形の内角の和に応用できますね。

つまり、「多角形は、三角形に分けることで、内角の和を求めることができる」という点に気づかせてもおもしろいですね。

 

多角形の内角の和の授業についてはこちら

(作成奮闘中)

-5年生の算数

執筆者:

関連記事

腹囲がどのくらい減れば、痩せて見えるのか

ダイエットをするときに、やはり気になるのが、人の目ですね。 一番気になるお腹周り(腹囲)が、どのくらい減れば、外見が痩せて見えるのかを数学的に考えてみましょう。 見た目はすぐに変わらない まずは、人の …

タクシーでいくら払う?(4年生以上)

4年生以上を対象とした「答えが複数ある問題」です。 「筋道を立てて考え説明することの大切さ」や「算数を知らないと損をする(知っていると得をする)こと」、そして「算数って楽しい!」と思ってもらえる授業に …

〇割△分□厘に関する誤解

分=0.01じゃない! 漢数字で1より小さい数を表すとき、野球の打率を思い出すとわかりやすいと思います。3割4分5厘といいますね。これは打率が34.5%(0.345)を表します。 気を付けなくてはなら …

三角形の内角の和を帰納的&演繹的に求める方法

三角形の内角の和が180°であることを導くには多くの場合、帰納的に考えます。ここではその帰納的な考え方とともに、三角形の内角の和を演繹的に考える方法も解説します。 帰納的①:角度をはかる 三角形の3つ …

面積の公式は1つでいい!万能な公式を紹介します!

面積の公式は、「たて✕横」や「底辺✕高さ」などたくさんあります。 「1つの公式に当てはめれば全部うまく行く!という万能な公式があればいいのに!」と考えたことがある人も多くいるでしょう。 ここでは、そん …