算数を究める

算数の基礎と雑学をわかりやすく解説します。よりよい算数授業と算数好き児童を増やすサイト

6年生の算数 単発授業

直方体を何回切れば展開図になる???

投稿日:2019年10月8日 更新日:

直方体があります。

この直方体には12本の辺がありますが、展開図にするためには、いくつの辺を切ればいいでしょうか??

解法① くっつく辺の数を考える

直方体の展開図を考えます。

直方体の展開図の周りの辺は、全部で14本あります。この辺が2つずつくっついて直方体の1つの辺になります。

下の展開図の同色のところがくっつきます。

14本ある辺が2本ずつくっつくので、直方体は、

14÷2=7 で、7本の辺がくっついたものであることがわかります。

つまり、直方体の12本の辺のうち、7本の辺を切れば展開図になります。

解法② 不要な辺を除く

直方体の展開図には19本の辺があります。

直方体には12本の辺があります。

展開図の19本ある辺のうち7本は不要なのです。

つまり、この7本を切ればいいのです。

解法③ 折られる辺を考える

直方体には12本の辺があります。その内、展開図で考えると、上の5本は切られることなく、折られる辺です。つまり、12本中5本は切らないので、

12-5=7

で7本切ることがわかります。

解法④ 一般化する

直方体(四角柱)ではなく、簡易化し、三角柱で考えてみましょう。

この三角柱を展開図にするために、3本の辺からなる底面について考えます。

底面の3本の辺を全て切ると、展開図はバラバラになってしまいます。(上面も同様)

つまり、1つの辺を残さないといけません。

次に、側面を考えると、側面の3本ある辺のうち、1本を切ると、開きます。つまり、側面は1回切ればいいのです。

よって、三角柱を展開図にするためには、

(3-1)×2+1=5 で、5本切ればいいことがわかります。

これを、n角柱で考えます。まず、上面と底面はそれぞれ1本の辺を残すので、(n-1)本の辺を切ります。

側面はn角柱でも、1本切れば開きます。

つまり、n角柱を展開図にするためには、

(n-1)×2+1 本の辺を切る

という一般化が図れました。

直方体は四角柱ですので、nに4を代入し、

(4-1)×2+1=7

7本の辺を切ればいいことがわかります。

-6年生の算数, 単発授業

執筆者:

関連記事

不思議な時計のひみつ

上映77周年記念ミッキーファンタジーアワー限定時計 という面白い時計があります。 上の画像を見ていただければお分かりの通り、文字盤が一般的な時計とは異なります。 画像の短針は4を指しているので4時です …

比例学習のスパイラル(各学年で教えるべきこと)

算数の山の1つである「比例」の学習は4年生から始まります。どのような系統的学習を経て児童は比例を学ぶのでしょうか。     もくじ 4年:変わり方表を横に見る表を縦に見る式であらわすグラフであらわす5 …

正方形はいくつある??

正方形は何かを学ぶ2年生から高校生まで、幅広く行える授業です。子供の実態に応じて、または何を身につけさせたいのかに応じて、解法例を取り上げ、思考を深めてみてください。 もくじ 問題解法①コツコツ数える …

世界のわり算の筆算4種類!メリット&デメリット

世界中には様々なわり算の筆算のやり方があります。世界中のわり算の筆算を知ることで、日本のわり算の筆算のメリット・デメリットが見えてきます。最初にメキシコから見ていきましょう。 もくじ メキシコのわり算 …

九九が織りなす美しい形

正十角形の頂点に0から9までの数字を順に記します。 九九の答えの一の位の数字を、順番に線で結ぶと美しい形が出てきます。     6の段は反時計回りの4の段と同じになります。同じように7の段と3の段、8 …