算数を究める

算数の基礎と雑学をわかりやすく解説します。よりよい算数授業と算数好き児童を増やすサイト

6年生の算数 単発授業

直方体を何回切れば展開図になる???

投稿日:2019年10月8日 更新日:

直方体があります。

この直方体には12本の辺がありますが、展開図にするためには、いくつの辺を切ればいいでしょうか??

解法① くっつく辺の数を考える

直方体の展開図を考えます。

直方体の展開図の周りの辺は、全部で14本あります。この辺が2つずつくっついて直方体の1つの辺になります。

下の展開図の同色のところがくっつきます。

14本ある辺が2本ずつくっつくので、直方体は、

14÷2=7 で、7本の辺がくっついたものであることがわかります。

つまり、直方体の12本の辺のうち、7本の辺を切れば展開図になります。

解法② 不要な辺を除く

直方体の展開図には19本の辺があります。

直方体には12本の辺があります。

展開図の19本ある辺のうち7本は不要なのです。

つまり、この7本を切ればいいのです。

解法③ 折られる辺を考える

直方体には12本の辺があります。その内、展開図で考えると、上の5本は切られることなく、折られる辺です。つまり、12本中5本は切らないので、

12-5=7

で7本切ることがわかります。

解法④ 一般化する

直方体(四角柱)ではなく、簡易化し、三角柱で考えてみましょう。

この三角柱を展開図にするために、3本の辺からなる底面について考えます。

底面の3本の辺を全て切ると、展開図はバラバラになってしまいます。(上面も同様)

つまり、1つの辺を残さないといけません。

次に、側面を考えると、側面の3本ある辺のうち、1本を切ると、開きます。つまり、側面は1回切ればいいのです。

よって、三角柱を展開図にするためには、

(3-1)×2+1=5 で、5本切ればいいことがわかります。

これを、n角柱で考えます。まず、上面と底面はそれぞれ1本の辺を残すので、(n-1)本の辺を切ります。

側面はn角柱でも、1本切れば開きます。

つまり、n角柱を展開図にするためには、

(n-1)×2+1 本の辺を切る

という一般化が図れました。

直方体は四角柱ですので、nに4を代入し、

(4-1)×2+1=7

7本の辺を切ればいいことがわかります。

-6年生の算数, 単発授業

執筆者:

関連記事

分数のわり算 ~7種類の解法~

「分数のわり算は、わる数の分母と分子を逆にして(逆数を)かければよい」という考えだけが取り上げられますが、他のやり方でも、答えを導くことができます。 このページでは、 という問題から、 を解くことを考 …

長方形を正方形に分ける ~公約数&フィボナッチ数列への発展~

長方形を正方形でわけるだけで、 4年生では、正方形の学習の発展として、5年生では、最大公約数の発展として、またはフィボナッチ数列というおもしろさとして扱うことのできる教材です。 できるだけ大きな正方形 …

長方形はいくつある??

長方形とは何かを学ぶ小学校2年生から、組み合わせの学習(コンビネーション)をする高校生まで授業で扱うことができます。 問題 下の図の中に長方形はいくつありますか? 解法①コツコツ数える 場合分けを行い …

カレンダーの数字のヒミツ

カレンダーの数字には、様々なヒミツが隠れています。ヒミツの証明まで考えなければ、3年生以上の学年で扱うことができる教材です。 あなたは、いくつのヒミツを見つけることができますか?このページでは9種類の …

「相似な図形」はこれでカンペキ!相似な図形のかき方8種類!

小学校における平面図形の最後を飾るのは「相似な図形」です。「相似な図形」のかき方、全8種類について紹介します! 今回は、2倍の拡大図のかき方について説明します。 マスに注目してかく! はじめに行う相似 …