算数を究める

算数の基礎と雑学をわかりやすく解説します。よりよい算数授業と算数好き児童を増やすサイト

6年生の算数

対称の中心を使わずに点対称な図形をかく

投稿日:2021年3月5日 更新日:

線対称の線対称は点対称!

線対称と点対称の授業では、それぞれの特徴について考え、それぞれの図形の書き方を学びますが、線対象と点対称の関係までは考えません。むしろ、全くの別物として扱うこともあるようです。

しかし、線対称と点対称には密接な関係があります。

それは、点対称な図形を描くには、線対称な図形の描き方を2回繰り返せばいいということです。

言葉で説明してもわかりにくいので、早速、描いてみましょう。

下のような図形の点対称な図形を描いてみましょう。

これは、もちろん下のようになりますね。

では、これを、対称の中心を使わずに描いてみましょう。

まず、対称の軸をもとに、線対称な図形を描く要領で進めていきます。

これでは、線対称な図形であり、点対称な図形ではありません。次に、先ほどの対称の軸と垂直に交わる直線を第2の対象の軸とし、再度、線対称な図形の要領で描いていきます。

線が重なって見にくいですが、下のようになります。

これで、点対称な図形を描くことができました。

このように、線対称な図形の描き方を2回使うと、点対称な図形を描くことができるのです。

また、2本の対称の軸の交点が、対称の中心となることも注目したいポイントです。

どうして そうなるの?

少し数学的に証明してみましょう。

ある点を(-a,-b)とします。この点の対称の中心をもとにした、対応する点は(a,b)です。

また、この…(-a,-b)の対称の軸をもとにした、対応する点は(a,-b)です。

この(a,-b)を2本目の対象の軸(先ほどの対象の軸と垂直に交わる直線)をもとに、対応する点は(a,b)となります。

これは、対称の中心をもとにした、対応する点(a,b)と一致しますね。

 

このように、線対称と点対称を全くの別物として扱うのではなく、関係性を捉えさせることで、図形への見方を深めることができます。

-6年生の算数

執筆者:

関連記事

長方形はいくつある??

長方形とは何かを学ぶ小学校2年生から、組み合わせの学習(コンビネーション)をする高校生まで授業で扱うことができます。 問題 下の図の中に長方形はいくつありますか? 解法①コツコツ数える 場合分けを行い …

タクシーでいくら払う?(4年生以上)

4年生以上を対象とした「答えが複数ある問題」です。 「筋道を立てて考え説明することの大切さ」や「算数を知らないと損をする(知っていると得をする)こと」、そして「算数って楽しい!」と思ってもらえる授業に …

no image

『速さ』はどうして『道のり÷時間』なのか

小学校5年生で学習する『速さ』ですが、速さは児童の身近にありながらも、直接目で見ることができないので、イメージがしにくい学習でもあります。 児童にとって、身近な速さは距離が統一されている場面です。しか …

no image

小学校で習う8種類のグラフ

小学校算数では1年生から6年生までの間に8種類のグラフについて学習します。特徴を簡単に説明すれば、 数量の大小を比較するのは絵グラフと棒グラフ 数量の変化をとらえるのは折れ線グラフ 資料の部分と部分( …

no image

長方形を正方形に分ける ~公約数&フィボナッチ数列への発展~

長方形を正方形でわけるだけで、 4年生では、正方形の学習の発展として、5年生では、最大公約数の発展として、またはフィボナッチ数列というおもしろさとして扱うことのできる教材です。 できるだけ大きな正方形 …